Линейная форма - significado y definición. Qué es Линейная форма
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Линейная форма - definición

Линейный функционал

ЛИНЕЙНАЯ ФОРМА         
форма 1-й степени, т. е. однородный многочлен 1-й степени от n переменных x1, x2,..., xn. Общий вид: ,где коэффициенты ai - постоянные.
Линейная форма         

Форма первой степени. Общий вид Л. ф. n переменных x1, x2, ..., xn:

f(x1, x2, ..., xn) = a1x1 +a2x2 + ... + anxn,

где a1, а2, ..., an - постоянные. Если x1, x2, ..., xn трактовать как координаты вектора х в n-мерном векторном пространстве (См. Векторное пространство), то f удовлетворяет условию

fx + βу) = αf(x) + βf(y)

(где х, у - векторы, α, β - числа), которое может быть принято за определение.

Линейная форма         
Лине́йная форма, лине́йный функционал (также используются термины 1-форма, ковектор, ковариантный вектор) — линейное отображение, действующее из векторного пространства L над полем K в поле K. Условие линейности заключается в выполнении следующих двух свойств:

Wikipedia

Линейная форма

Лине́йная форма, лине́йный функционал (также используются термины 1-форма, ковектор, ковариантный вектор) — линейное отображение, действующее из векторного пространства L {\displaystyle L} над полем K {\displaystyle K} в поле K {\displaystyle K} . Условие линейности заключается в выполнении следующих двух свойств:

Φ ( f + g ) = Φ ( f ) + Φ ( g ) , {\displaystyle \Phi (f+g)=\Phi (f)+\Phi (g),}
Φ ( α f ) = α Φ ( f ) {\displaystyle \Phi (\alpha f)=\alpha \,\Phi (f)}

для любых двух векторов f , g L {\displaystyle f,g\in L} и любого α K {\displaystyle \alpha \in K} . Таким образом, линейная форма (линейный функционал) является частным случаем понятия линейного оператора, действующего из одного векторного пространства в другое векторное пространство: L K M K {\displaystyle L_{K}\to M_{K}} , рассматриваемых над одним и тем же полем K {\displaystyle K} . Именно, в случае линейной формы (линейного функционала) векторное пространство M K = K {\displaystyle M_{K}=K} .

Термин линейная форма обычно используют в алгебре и алгебраической геометрии, чаще всего говоря при этом о конечномерных векторных пространствах. С алгебраической точки зрения линейная форма представляет собой частный случай более общего понятия k-формы при k=1.

Термин линейный функционал распространён в функциональном анализе, причем чаще всего речь идет о бесконечномерных векторных пространствах, элементами которых являются функции того или иного класса, и термин функционал подчеркивает то, что рассматривается функция (отображение), аргументом которой являются функции. В качестве поля K {\displaystyle K} чаще всего используются поля R {\displaystyle \mathbb {R} } или C {\displaystyle \mathbb {C} } .

¿Qué es ЛИНЕЙНАЯ ФОРМА? - significado y definición